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ABSTRACT
. The U.S. Department of Agriculture's Statistical Reporting
Service (SRS) is researching the use of remotely sensed data to
improve the statistical characteristics of its crop estimates.
This study compares the corn and soybean area estimation
performance of Thematic Mapper (TM) to Multi-Spectral Scanner
(MSS) Landsat data. Corn regression rela tionshi ps are im prove d
using TM data. Data reduction designs invol ving pixel averaging
and channel selection make TM processing competitive with MSS.
Correlations between TM field reflectance and farmer-reported
crop yields are much higher than the respective Objective Yield
correlations. Recommendations include additional research for
yield applications, for sampling frame development, and for
resolving questions relating to the statistical characteristics
of the estimates.
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GLOSSARY
A-Format: Digital data from Landsat Multi-Spectral Scanners (MSS)
are available to users in several different CCT formats. A-
format data are processed with radiometric corrections only. P-
format data are also processed with geometric corrections and
Cubic Convolution Resampling (CCR). CCR produces a pixel with
higher spatial resolution (representing a smaller area on the
ground) and is generated by combining the weighted values of
16 A-format pixels [~]. (Underscored numbers in brackets refer
to items in References section.)
Bands: Satellite sensors are equipped with detectors that measure
the amount of light energy reflected from the surface of the
Earth up to the satellite. Light energy is part of the electro-
magnetic continuum of wave energy which includes X-rays, ultra-
violet light, visible light, infra-red waves (near, middle, and
thermal), and communications frequencies. Detectors are
engineered by selective filtering to register energy within
narrow wavelength intervals (bands) of this continuum. The MSS
sensor has four bands within the visible to near infrared portion
of the spectrum while TM has seven bands. Two of the additional
TM bands are in the middle infrared range and the third is in the
thermal range. Thermal energy is radiated or emitted rather than
reflected.
BeneCit/Cost Analysis: An economic analysis of a process which
seeks to determine if expended resources are effectively and
efficiently used.
Boundary Width: A representation of Landsat pixels corresponding
to a June Enumerative Survey (JES) segment contains information.
about the relative location of pixels within the segment.
Boundary pixels are those which "touch" the segment border or the
within segment border between two JES-identified fields.
Boundary pixel reflectance values are assumed to represent a
mixture of covers on either side of the boundary and are usually
excluded from signature development. For MSS processing, the
number of pixels defining the boundary width is usually one.
However, the boundary width for TM analyses is increased because
the TM pixel represents a smaller ground-area.
Calibration: This is a procedure (a first-order linear
transformation) to locate JES segments in terms of latitude and
longitude (map-based coordinate system). Corresponding points
(such as road intersections) observed in the segment photo are
located on U.S. Geological Survey quadrangle maps. In this way,
Landsat pixels corresponding in area to the location of the
segment on the ground can be further identified as belonging to
specific fields (and therefore specific crops) within the segment
[3.,~,.uJ .

CCT: Computer Compatible Tapes are magnetic tapes (6,250 or
1,600 bits per inch) containing the Landsat digital data and sold
by EROS Data Center to users.
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Channels: Used interchangeably with Bands but also used in a
computer processing sense to identify a data stream from a
specific sensor band of aCCT.
Classifier: The collection of discriminant functions identified
during signature development (supervised clustering) and used to
label pixels in the scene with a cover or crop identifier.
Classifier development is the decision process used by the
analyst to produce the classifier. Included are decisions about
spectral class inclusion and the use of prior probabilities.
(See Priors and Clustering.)
Clustering: A process to determine spectral classes within a
sample of Landsat data. The algorithm used is CLASSY [~], which
alternates maximum likelihood iterative techniques for estimating
the parameters of a mixture distribution with an adaptive
procedure for splitting, combining, and eliminating the resultant
components of the mixture, and leads to an estimate of the number
of multivariate normal components in the mixture. Two approaches
to clustering are supervised and unsupervised. Supervised
clustering uses as input the pixels from a single known cover
like corn. Spectral differences within the cover are identified.
Unsupervised clustering uses as input unlabeled pixels,
presumably from a mixture of crops. The output from unsupervised
clustering are spectral classes which most likely are
representative of a mixture of covers having similar or identical
reflectance pa tterns. (See Signa ture.)
Commission Error: This is one measure of classifier accuracy and
indicates the degree to which particular crops or covers are
"overclassified." It is computed for each specific crop or
cover. The commission error for corn, for example, is the number
of non-corn pixels (according to the ground reference data)
classified to "corn" and expressed as a percentage of the total
number of pixels classified as corn. (See Percent Correct.)
Cubic Convolution Resa.pling: One of the differences between the
A-Format and P-Format Landsat CCT. The P-Format pixel is
generated by combining with various weights the values of 16
nearest neighbor A-Format pixels. This process produces pixels
of higher spatial resolution (representing a smaller ground area)
and serves as a vehicle for geometric correction to the P-Format
data [,2.5J.

Discriminant Functions: These are derived from the probability
density functions of the spectral classes defined during
clustering and collectively form the maximum likelihood
classifier. Formulas for the discriminant functions may be found
in Section 3.3 of Appendix II. (See Priors.)
EDITOR: The collection of software developed under the auspices
of USDA to process Landsat data and produce regression estimates
of crop acreages.
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EROS Data Center: The Earth Resources Observation Systems (EROS)
is a program of the U.S. Department of the Interior and
administered by the Geological Survey. Together with NOAA
(National Oceanic and Atmospheric Administration), the Center
provides remotely sensed data products (primarily Landsat
products) to users.
Field-Level Edit: A quality control measure designed to monitor
the accuracy of the JES data used for ground reference in
signature development and regression parameter estimation.
Field Pixel: A generated reflectance vector that is the average
within each channel of Landsat pixel values making up a JES
field. The 50-pixel field pixel (FP) is computed in the same
manner but instead of generating a single FP per field, one FP is
created for every 50 pixels in the field. Field boundary pixels
are usually excluded from the computation.
Jackknife: A method developed by Quenouille (1956) and so named
because of its flexibility as a statistical tool Ell]. It is
used in this paper to identify designs which subset the sample to
allow independent classifier development and regression parameter
estimation without losing degrees of freedom.
Landsat: A series of NASA Earth observing and resource
monitoring satellites. The five satellites in the series to date
all carried the MSS. Landsat-4 and Landsat-5 also carry the
newly developed high resolution, high data rate TM scanner. MSS
captures reflectance data for areas on the ground as small as 57
meters square (after resampling), in a four component vector
(bands), with measurement values (quantization) ranging from 1 to
64. The TM scanner produces 28.5 meter resolution pixels with
seven vector components measured in 256 quantization levels.
MS5: Multi-Spectral Scanner, one of the first satellite-borne,
Earth-observ ing sensor s. (See Landsa t.)
P-Format: One of the available CCT formats. (See A-Format.)
P-value: In this study, it is the probabili ty of obtaining a t-
value equal to or greater than the observed t-value under the
conditions stated by the null hypothesis. If the null hypothesis
is rejected, the P-value is the probability of committing a Type
I Error.
Percent Correct: One measure of the overall quality of a
classifier. It is reported for individual crops as well as for
all crops or covers in the sample. It is the percentage of JES-
defined sample pixels correctly labeled; that is, those pixels
having agreement between the classifier cover label and the JES
ground cover label. (See Commission Error.)
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Pixel: A term derived from "picture element," the basic unit of
an image-forming system, and generalized to mean the basic unit
for recording satellite-acquired remotely sensed data. The pixel
is an N-component vector with N corresponding to the number of
channels (bands). Each component is an integer value wi thin the
quantization range of the sensor, indicating the level of energy
(within that band) reaching the satellite sensor. The pixel is
used somewhat differently by the two basic approaches to remote
sensing applications: image processing and numerical analysis.
Images are generated by equating shades of gray or tones of color
to pixel-vector patterns or relationships. Numerical analysis
relies more on pattern definition and pattern recognition (in a
mathematical sense) of the actual numbers making up the pixel
vector. A scene can be thought of as a giant matrix in which
every element (pixel) is referenced by a row and column.
Priors: A variation of maximum likelihood classification which
allows "expectations" of finding a particular cover of interest
in the scene to modify the classification criterion.
Relative Efficiency: A measure of the effectiveness of this use
of Landsat data relating the efficiency of the JES direct
expansion estimate to the efficiency of the Landsat regression
estimate. See section 3.7 of Appendix II.
Scene: A Landsat scene. The continuous acquisition of the
satellite sensor is broken at certain intervals defined by orbit
row and path in such a way that each division (scene) contains
the same number of pixels and covers the same land area.
Segment Landsat Window: A block of Landsat data containing
pixels belonging to a specific JES segment.
Signature: Signature development is a process involving a
particular Landsat scene and a specific crop or cover. Its goal
is to identify the spectral classes (categories) that define the
reflectance patterns of the cover as observed in the sample and
assumed to hold across the scene. The set of spectral classes
found define the signature of the cover in that scene.
Cover signatures are developed from supervised clustering.
TH: Thematic Mapper is the newest sensor available on Landsat
satelli tes. (See Landsat.)
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INTRODUCTION
This paper reports the performance of IM (Thematic Maeeer)

satellite data used for crop acreage estimation and examines its
pot en t ia 1 for c r0 p y ie1 d ass e ssm en t. T Mis com par e d wit h 1:1~
CMulti-Seectral Scanner) data using the Landsat crop-area esti-
mation procedure developed by the Statistical Reporting Service
(SRS) [1.]. Holko and Sigman [,9.] describe the current SRS
procedure for MSS data. Their paper is reprinted here as Appendix
II.~/

For this study, a Landsat scene simul taneously acquired by
both the TM and MSS satellite sensors is analyzed according to
the current procedure. Several TM-specific modifications to the
current procedure are outlined. Performance results between MSS
and TM and within the TM specific designs are compared at the
sample level in terms of cost and precision of estimates pro-
duced.

Processing starts after the collection of ground reference
data during the annual SRS June Enumerative Survey (JES). The
JES is a longstanding survey designed to provide direct expansion
estimates of crop acreages early in the crop year [la]. All
ground covers within specific land plots called segments are
identified through personal interviews with farmers and drawn off
on aerial photographs.

The JES photographs and Landsat scenes are registered to a
map base in latitude/longitude coordinates. This common
referencing allows pixels corresponding in location to the JES
fields to be so identified and manipulated. Pixel reflectance
vectors from all fields with~n segments in the scene for a
s pee i fie c 0 v e r , sue has cor n , are Q~'y~.t.~.J:~.Q. top rod u c e
signatures. Signatures are discriminant functionA defined by
mean vectors and covariance matrices describing the multivariate
normal distributions assumed to underlie reflectance patterns.
The collection of these statistics for all covers in the scene
constitutes the scene classifier [21].

Pixels within ~ment Landsat windows are assigned a cover
identifier by the classifier. Counts of pixels assigned to a
specific crop are regressed against the crop hectares obtained
during JES enumeration. These sample level regression coeffic-
ients are usually applied to the counts from full-scene
classification and aggregated across scenes to obtain State-level
crop-area estimates. (For this study, full-scene processing and
aggregation are unnecessary because measures of precision and
processing costs are obtained from sample-level processing.)

l./ First occurrence of Glossary teras are underlined.
Underscored numbers in brackets refer to items in References
section.
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EVALUATION CRITERIA
The measure used to evaluate MSS results in previous SRS

studies is the ulative efficiency (RE) ell]. It is defined as
the ratio of the variance of the JES direct expansion estimate to
the variance of the Landsat regression estimate. The RE
indicates the factor by which the JES sample size (and corres-
ponding survey costs) would have to be increased to produce
direct expansion estimates having the same precision as that of
the Landsat regression estimates. The RE is used in ~enefi1L
cost analysis to compute the benefits of Landsat as indirect
savings in data collection costs from not increasing the JES
sample size. The goal is to "save" more than the costs
associated with acquiring and processing Landsat data.

One shortcoming of the RE measure is that it ignores the
time differential. JES estimates are available in early July
while Landsat regression estimates are not available until
December. To some information users, this time delay severely
diminishes the value of the information, no matter how precise
the later estimates might be.

Expanding the JES sample size would have statistical and
operational benefits to SRS not taken into account by the RE
mea sure. Estimates of all crops, Iivestock inventories, prices,
grain stocks, and crop yields would be affected, directly or
indirectly. The increa sed preci sion (assum ing no change to the
current level of non-sampling errors) from expanding the JES
sample size would be available at earlier dates.

It is, therefore, misleading to view the RE in any absolute
sense. However, for purposes of comparing the performance of the
different satellite sensor formats, this measure is satisfactory
because it does measure relative improvements between designs
producing estimates for the same crops within the same time
interval.

DATA SETS

Three sets of data are discussed: Landsat, yield, and ground
reference.
Landsat Data

Scene 40049-16264 over west-central Iowa (path 27, row 31)
simultaneously acquired by the Landsat-4 MSS and TM sensors on
September 3, 1982 is used in the comparative analyses that
follow. TM bands 6 (thermal) and 7 (far-infrared) are switched
to processing chann~~ 7 and 6, respectively, so that channel
numbers correspond to increasing band wavelengths. The ~puter
compatible tapes (CCT) for both MSS and TM are in the P-format.

The TM CCT received from the EROS Data Center contained some
errors. (CCT's provided during that time were primarily for
engineering studies, not user-application work.) Channel 7
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(Thermal Band 6) was found to have a four pixel column left shift
relative to the other channels. The problem was corrected by
shifting this band to the right during the conversion to standard
EDITOR tape format.

This CCT was also missing 1I10ng records" 470 and 1038
corresponding to scan image lines 1877 through 1880 and 4149
through 4152, respectively. None of the segment Landsat windows
used for analysis spanned these scan lines, so the loss of data
was not a factor in the analyses. NASA Conference Publication
2326 contains the proceedings of the Landsat-4 Early Results
Symposium and Landsat Science Characterizations Workshop.
Several papers included in that publication discuss similar
problems and describe further the mechanical operations and
performance of the MSS and TM sensors [l,~J.

The TM data set contains four pixels for every MSS pixel
with TM pixels accumulating reflectance over a 28.5-meter square
area compared with MSS at 57 meters square. The TM pixel
reflectance measurement vector contains seven values compared
with the four for MSS. Each TM vector component value may range
from 0 to 255 while the MSS range is 0 to 63. These differences
result in a sevenfold increase in the volume of TM data.
Yield Data

The yield study utilized Objective Yield [laJ survey data in
sample fields falling in the 60 JES segments used for the area
estimation study. Farmer Reported Field Yield is from the Form
D: Postharvest Interview for both corn and soybeans. Objective
Yield estimates of field yield are from the monthly summary
tables provided to the Iowa State Statistical Office (SSO) during
September and November.
Ground Reference

Sixty JES segments approximately 1 square mile each
enumerated in 1982 are used in the designs identified below.
These ground-gathered data were subjected to the routine JES
editing process and the field-level edit. Ground data are
unchanged from that used for the MSS processing in 1982 [~J.
However, several segments were found to have minor .QAlibrli.i..Q.ll
problems. Figures 1 through 3 graphically show the problem. The
minor errors are undetectable in MSS processing but show up
plainly in the TM designs. The miscalibration probably has no
effect in the MSS analysis (because of the larger size MSS
pixels) but are corrected for TM processing to avoid using
incorrectly labeled pixels for signature development.

3



Fi~ure 1. MSS greyscale
of Band 2, Segment 8153
overlayed with line
plot of digitized field
boundaries using the
calibration developed
for MSS processing. A
calibration problem is
not obvious in this
figure.

Fi~ure 2.
TM greyscale of
Band 7 (Channel
6) Segment 8153
overlayed with
line plot of
digitized field
boundaries with
the same cali-
bration used in
Figure 1. Note
evidence of a
problem along
the left and
bottom edges of
the segment. By
definition the
segment extends
from the middle
of the road to
the middle of
the road.

4
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Figure ~. TM greyscale of Band 7 (Channel
6), Segment 8153, overlayed with line plot
of digitized field boundaries using the
corrected calibration. Note the alignment
of all four segment boundaries along the
roads showing up "light" in the greyscale.
Note also the rightmost field in the upper
left section of the segment. There appears
to be a boundary problem with this field as
evidenced by the changing printer symbol
occurring about two-thirds the field width
measured from the right side of that field.
This may be an example of a partially
harvested field showing two different
signatures or it may be that the left part
of this field really belongs to the field
adjoining to the left.
The difference between the TM and MSS grey-
scales gives a good idea of the degree of
additional information present in TH. The
MSS greyscale print quality is somewhat
degraded in this example, but even at its
best, little improvement would be noted.
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CROP AREA ESTIMATION DESIGNS
Three basic designs are presented. Within each the best of

several variations ii selected on the btils of Benefit/Cost
considerations. Each successive design builds on the character-
istics of the previous one.
Desi~n TM-l: MSS Mimic

In the TM-1 design, TM processing duplicates whenever
possible the MSS processing. All seven bands (with the thermal
band renumbered as channel 7) are used for signature development
and ensuing classification. All field interior pixels are used
for signature development. As with MSS processing, pixels on
field boundaries are not used. Specifics of the analysis for
both TM and MSS are presented in table 1.

The boundary width is increased from the MSS single 57-meter
pixel to three TM 28.5 -meter pixels or 85.5 meters. This
lessened the chance of using TM mixed pixels for signature
development. The digitized field boundary may not coincide
exactly with the true field boundary location and exact alignment
of MSS pixels to TM pixels is not guaranteed; therefore, the
three TM pixel boundary is used instead of two, even though it
"thickens" the boundary compared with MSS. Tying up this
additional pixel in the boundary acts in a minor way to
systematically reduce the volume of data used for clustering.

Table l--Specifics of the TM-1 design

MSS

Categories

TM
1 thru 7 ~/
3 pixels

Characteristic
Channels
Boundary width
Clustering:

Cover

4,5,6,7
1 pixel

Pixels

Design
I
I

Pixels Categories

192,541 2./61.9
77.7

Corn
Soybeans
Other crops
Total

Pixels classified
Percent correct 1
Percent correct 2

11,663
8,679
5,247

25,589
47,890

65.4
73.6

4
5

12
21

32,413
23,717
11 ,199
67,329

10
5

31
46

1/ Channels 6 and 7 correspond to TM bands 7 and 6,
respectively.

Z/ Percent correct 1, the standard, takes into account misclas-
sification among the covers that consti tute "other crops" while
percent correct 2 treats "other crops" as a single cover.
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Table 2 shows the results of sample classification for both
the TM and MSS designs and lists by strata the R2 value and B(1),the slope coefficient, of the regression equations. Ignoring
strata is desirable from a hypothesis testing point of view
because of the increased degrees of freedom and the more
definitive nature of a single test. Ignoring strata (pooling) in
Iowa is more easily justified than in other States because Iowa's
strata are more a geographic separator than an agricultural
intensity identifier and sampling fractions differ very little
between strata. Any loss in estimation efficiency resulting from
pooling should have a similar effect in both analyses; therefore,
pooling is not expected to confound the test results. The E~
values listed are computed from observed B(1) values under the
null hypothesis that a stratum slope coefficient is equal to the
pooled strata (ALL) slope coefficient. Student's t is used for
each straturn test [.5.].

Table 3 compares the performance of simulated TM data with
the results of these real TM data. As reported by Sigman and
Craig [.21.], the simulated data were acquired over northern
Missouri in early September 1979 by an aircraft-borne sensor.

Table 2--TM-1 sample level regression characteristics
~Strata
/ N

MSS
p-

RE B( 1) Value
TM

RE B ( 1)
P-

Value
Corn:
14/26
15/17
17/12
18/ 5ALL/60

0.44
0.40
0.82
0.85
0.49

1. 71
1. 56
5.05
5.00
1.93

0.72
1.07
0.97
1.01
0.86

0.50
0.55
0.46
0.59N/A

0.87
0.94
0.92
0.96
0.88

7.38
15.63
11.36
18.75
8.19

0.96
1.05
1.01
0.86
1.00

0.720.45
0.90
0.26

N/A
Soybeans:
14/26 0 •86
15/17 0.92
17/12 0.87
18/ 5 0.93
ALL/60 0.89

6.85
11.72

6.99
10.71

8.94

0.99
1.02
1.00
1.23
1.01

0.85
0.90
0.96
0.34

N/A

0.91
0.88
0.88
0.86
o .91

10.67
7.81
7.58
5.36

10.92

0.95
1.00
1.23
1.52
0.99

0.54
0.88
O. 11
0.23

N/A
N/A = Not appropriate. Strata = JES strata. N = Sample size.

Table 3--Comparison of TM-1 results with simulated TM results
Cover Missouri 1q7q R2

S-MSS MSS S-TK P-TM Samole
Iowa 1q82 R2

MSS TM Samole
Corn 0.55 0.51
Soybeans 0.97 0.93

0.89
0.99

0.85
0.95

1 1
11

0.49 0.88
0.89 0.91

60
60
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To account for atmospheric differences between the low level
aircraft acquisition and the satellite acquisition, predicted TM
values (P-TM) are derived. They are computed by applying the
difference between simulated (S-MSS) and real MSS R2 to the
simulated TM (S-TM). The Iowa TM results are remarkably similar
to the simulation levels given the difference in sample sizes andthe higher Missouri MSS levels.

Returning to the results of the TM-1 design, Hotelling's T
test for equality of correlation coefficients [a,lZ] is used to
test for significant improvement in the TM pooled strata R2
values against the null hypothesis of no differences between TM
and MSS. Table 4 shows the rO, r1, r2, and D value elements of
the test; the computed Ti the P-value under the null hypothesis
of no difference; and the degrees of freedom associated with the
test. There is little statistical reason to accept the corn null
hypothesis of no difference in classifier performance between
sensors. However, the test results for soybeans do not supportrejecting the null hypothesis.

The classification eercent correct information presented in
table 5 shows that the improvement in the corn regression comes
not so much from the TM classifier's ability to correctly
identify a higher percentage of corn and soybean pixels as it
does from the classifier's ability to label noncorn and non-
soybean pixels to covers other than corn and soybeans. This
shows up in the TM classification's reduced ~mID~ssion error
rates and its higher "other crops" percent correct. No strong
correlation between percent correct levels and R2 levels is
evident in this classification. The overall percent correct
(which does not consider misclassification among the covers that
make up the "other crops" grouping) is only slightly better forTM than for MSS.

Table 4--Hotelling's T test or TH-1 R2 values
Degrees of ---Components of the test--- T- P-Croe freedom rO r1 r2 D value value

Corn 57 .774 .950 .699 .0378 9.19 0.00Soybeans 57 .971 .949 .942 .0053 0.72 0.24

rO: Correlation between the MSS and TM segment level pixel count
from classification.

r1: Correlation between the segment reported area and TM
classified pixel count.

r2: Correlation between the segment reported area and MSS
classified pixel count.

D: Determinant of matrix whose diagonal elements are 1 and
whose off-diagonal elements are r2, rO, and r1.

8
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NIA = Not appropriate.
The benefits of TM, expressed in terms of higher RE's have

costs associated with them, a function of higher acquisition and
processing costs of the TM data. To evaluate the gain from a
particular design, a benefitlcost (B/C) ratio is calculated.
Appendix I explains in detail the inputs and the method used to
obtain the ratio. Cost-efficient designs are those which
increase the precision of the estimates, but do so at a cost
below that of an expanded-sample JES. B/C values greater than 1
indicate a cost-effective design.

If a single classification is used to estimate a number of
crops, then some question arises as to how the benefit component
of the B/C for the analysis ought to be computed. This is
particularly true if several major or important crops are
estimated. (An al ternati ve measure proposed by Holko [jJJ does
not have this drawback.) Averaging of the RE's is not
attractive. Information users are generally interested in the
precision of the estimate for a particular crop, not in some
average across all crops.

The RE indicates the number of replications of the JES
sample necessary to achieve direct expansion precision comparable
to that of Landsat regression. However, the derived benefit is a
synthetic reduction of data collection and data editing costs of
a single survey. The maximum value of Landsat versus a single
expanded survey in which a number of items are estimated is then
a function of the minimum improvement (across items of equal

'\ I
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Table 6--TM-1 B/C ratio by sensor
Crop R2 RE BICMSS TM MSS TM MSS TM

Corn .49 .90 1.93 8.19 .66 .78Soybeans .89 .90 8.94 10.92 N/A NIA

NIA = Not appropriate.

importance). The BIC analysis based on minimum significant
improvement (corn) in table 6 indicates that neither the MSS nor
the TM Landsat processing produces cost-efficient estimates.

The RE of a crop at the analysis district (AD) level is
usually higher than at the State level [Z!]. Incomplete Landsat
coverage is partly responsible as is the conjectured loss of
paper-stratification efficiencies resulting from summarization by
analysis district. The 1982 Iowa State soybean RE of 1.2 with 67-
percent State coverage is much different from the 8.94 MSS AD RE
shown for soybeans in table 6. The MSS RE for corn in the table
is low for an AD, presumably because of the late scene date. But
it approximates the MSS State corn RE obtained from 1980 through
1983 (table III of Appendix II). Therefore, the corn BIC ratio
for the MSS design in table 6 represents a typical Iowa ratio.
Until further processing provides State-level observations for TM
analysis, the same AD versus State RE relationships are assumed
to hold, implying that the TM corn BIC is what typically might be
expected in full state analysis.
Desi2n TM-2: Data Reduction bv Pixel Avera2in2

The TM-1 design produced higher REfs and a higher BIC ratio
than MSS, but did not produce them cost effectively. The TM data
set contains four pixels for every MSS pixel; the TM pixel
reflectance measurement vector contains seven values for the four
values of the MSS vector; each TM vector component requires eight
computer bits while MSS requires only six bits. These
differences result in a sevenfold TM data increase which
significantly affects EDITOR processing costs. Given the other
constraints of this experiment, the only way to improve the BIC
ratio is to reduce the amount of data processed.

Data reduction in the signature development step is the
focus of the three subdesigns presented here. For the TM-1
design, over 67,000 labeled training pixels are extracted from
the segment Landsat window~ for submission to t~e clusterin&

._QLo~a m (C1ass fL.' -!~ -2 in'0 difie s that pro cess by com put ing an
average reflec ance value from pixels in a field. Significant
data reduction results from the use of this field oixel (FP) for
signature development.
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This data reduction is somewhat attractive for theoretical
as well as practical reasons. Distribution-based clustering
algorithms such as Classy assume independence within the input
data set. Reflectance values of same-field pixels are not
independent because of the nature of the data and the resampling
process used to produce the P-format pixel. Field pixels do not
have this independence problem; therefore, clustering should
follow more closely the distribution-based model.

Design A computes a single Field Pixel from all field-
interior ("pure") pixels for each field regardless of its size,
design B computes an FP from each group of 50 (or fewer) pure raw
data pixels in a field, and design C computes a 50-pixel FP using
both pure and boundary ("mixed") pixel values. Table 7 shows
results from those designs.

Maximizing BIC is the goal of designs beyond TM-1;
therefore, B is the winner of the TM-2 design types. Design A
probably did not produce a sufficient number of pixels for the
clustering algorithm to properly define spectral classes. Using
the 50-pixel method in design B more than doubles the original
number. Even so, some covers probably have an insufficient
number of pixels for good spectral definition. The optimal
number to average may be crop-specific or might be a function of
field size and number of fields.

Design C performs reasonably well and suggests the
advisability of additional research using boundary pixels for
classifier development. Perhaps, as Holko suggests, these should
be clustered as noncovers and their classification counts (along
with real-cover counts) used in a multiple-regression estimation
model L8.].

Table7--TM-2 design analysis coaparisons
Description

Training pixels (No.)
Spectral classes (No.)
Overall percent correct
Corn R2
Corn RE
Percent correct
Percent commission error
Soybeans R2
Soybeans RE
Percent correct
Percent commission error
BIC ratio

810
18
55.7

.87
7.6

64.9
21 • 1

.88
8.2

67.2
13.8

1.2

1 ,839
19
60.6

.88
8.2

69.1
17.5

.92
12.3
76.0
10.5

1 .3

4,700
24
60.2

.84
6. 1

68.3
19.9

.92
12.3
78.0
11 .0

0.9

1 1



Design TM-2 successfully achieves a higher BIC ratio than
TM-1. The improvement comes initially from lower signature
development costs. Beyond that, additional savings accrue
because the reduced number of spectral classes diminishes classi-
fication costs. The concept of data reduction for signature
development appears to be sound though more efficient and
effective implementations of the concept may be possible. While
data reduction in the sample is beneficial, its potential for
cost savings is limited to sample intensive processes. Data
reduction in the population (full scene) offers broader potential
for BIC improvements via lowered classification costs.
Desi«n TM-~: Data Reduction bv Channel Selection

Data reduction in the population can be achieved in a number
of ways: principal components (PC) transformation L2.3.],
population pixel sampling, channel selection, and others. The
substantial computer expense necessary to produce the PC
transformations is not expected to be offset by savings during
later processing and so is not attempted. Channel selection is
more attractive than pixel sampling because it reduces both
clustering and classification costs and requires no modification
to the standard estimation procedure. Pixel sampling would add
another element of variance to the estimation model, lowering RE
in the proce SSe

EDITOR has marginally useful software tools for optimal
channel selection. The choices studied here are "based on the
following: software considerations (four channels), maximizing
interchannel correlation between selected and nonselected
channels, minimizing this correlation between selected channels~
and differences in these channel correlations by crop. Table ~
shows the interchannel correlations for corn and soybeans
computed from the corresponding variance-covariance relationships
obtained from training pixels in the JES sample. The upper right
triangle is for corn and the lower left for soybeans.

Table 8--TM interchannel reClectance correlations by cover
Channels 1 2 3 4 5 6 7_

I CORN
I
I

1 .537 .453 .244 .379 .312 .496 I
I

2 S .571 .660 .158 .554 .456 .280 C
3 0 .549 .668 -.168 .487 .593 .231 0
4 Y .071 .068 -.250 .322 -.138 .097 R
5 B .389 .326 .173 .711 .687 .291 N
6 E .462 .372 .435 .156 .640 .279
7 A .501 .334 .358 -.015 .258 .352

N
SOYBEANS
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Table 9--TM-Scanner band characteristics
TM EDITOR Wavelength Nameband No. channel No. (Micrometers)

1 1 0.4-0.5 Blue
2 2 0.5-0.6 Green
3 3 0.6-0.7 Red
4 4 0.7-0.9 Near-infrared
5 5 1.6-1.8 Mid-infrared
1 6 2 •1-2 •4 Far-infrared
6 1 10.4-12.5 Thermal

SUbdesign

A
B
NISA,B
B
A
A,B

NIS = Not selected for any subdesign.

Table 10--TM-3 design analysis comparisons
Description

Training pixels (No.)
Spectral classes (No.)
Overall percent correct
Corn R2
Corn RE
Percent correct
Percent commission error
Soybeans R2
Soybeans RE
Percent correct
Percent commission error
BIC ratio

TM-~A
1,839

17
58.1

.743.8
67 • 1
19 • 1

.88
8.2

81.4
17.0

1 .0

TM-~B
1,839

17
60.0

.76
4 • 1

69.9
17 .6

.877.6
79.513.3

1.1

The two designs presented here use pure 50-pixel FP's
(described earlier) for clustering. Table 9 gives some band
characteristics of the TM sensor and indicates the channels
selected for the two subdesigns. Results of the analyses are
presented in table 10. There does not appear to be a great deal
of difference between the performance of the two designs;
however, B has a slightly higher BIC ratio and is the winner.
This design reduced data processing costs by two-thirds from the
TM-2 winner and by five-sixths from the TM-1 level (See Appendix
I table 2). However, accompanying this savings was a substantial
reduction in the RE, explaining the rather low BIC for TM-3.

The method of reducing data volume by channel selection
looks promising. Additional development of selection criteria
(specific to crop area regression estimation needs) and attendant
software is needed to maximize the benefits from this approach.
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SElSOR EFFECT ON BIAS IN R2
A key question is whether TM increases the precision of the

regression estimate, compared with MSS. Recent studies have
questioned how to most accurately measure the precision of
regression parameter estimates [a,ll]. These studies noted sig-
nificant differences between R2 values obtained from the current
procedure compared with those from jackknifin~ methods [12] and
seem to dispute the findings of the 1975 SRS study in Illinois
[~] which recommended using the same data set for classifier
training and parameter estimation.

One possibility explaining the differences is that using the
same data to develop a classifier and to evaluate its performance
"overfits" the sample data and biases the estimates of the
population regression parameters [jJl]. So, the regression
relationships obtained from the current procedure may not hold
outside the sample. Thus, it is appropriate to examine if this
tendency to overfit the data is a function of sensor type and to
determine if differences affect statistical testing. The
validity of performance tests may be questionable if differences
identified as significant are a function of sensor bias (which
negates the testing) rather than of a true measure of enhanced
performance.

The design of choice would use two full and independent
replications of the JES sample over this area: developing a
classifier on one set and estimating the parameters of the
regression on the second set. However, only one sample set is
available, so a modified jackknife technique is used. The 60
samples in this scene are separated into four groups by
quartering the scene into approximately equal-sized vertical
strips. JES land use strata are ignored. Segments falling in
the first or third strip are called group A; the others group B.
Each strip has 15 segments and each group has 30.

The alternating strip design is intended to minimize the
effect on classification of the across-scene variability of the
TM reflectance values, a function of the physical and mechanical
make-up of the TM scanner [Z,1!]. Within each strip, pixels are
sampled at the JES-specified sampling rate. The recent jackknife
designs referenced subsample segments over an area so that pixel
reflectance is sampled at one-half or one-third the JES-designed
rate. The fact that these different designs all produced similar
findings lends some power to the assertion that current methods
bias estimates of the regression parameters.

Two separate classifiers are developed: one for each group
of segments (A and B). The respective discriminant functions are
then used to classify both groups (four classifications).
Combining appropriate classifications produces an independent and
dependent data set having 60 observations each. If segments used
for classifier development are designated by lower case letters
and segments classified by capital letters, then segments in
group A processed with the classifier developed from group Bare
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identified as A/b. The other combinations are A/a, B/a, and Bib.
Taken together, A/b and B/a constitute the independent
classification, as none of the pixels classified are used for
signature development; conversely, the set Ala and Bib make up
the dependent classification. The classified pixel counts (first
from the dependent then from the independent classification) are
regressed against the segment-reported crop acres.

Both MSS and TM are processed in this manner; the results
are shown in table 11. Hotelling's T is used to test the null
hypothesis that R2 values from the independent and dependent
classification are not different. The P-values reported for
comparisons within sensor type do not support the null
hypothesi s. Since they are different, the independent regress ion
may reflect more accurately the relationship of classified cover
to actual cover in the population outside the sample than does
the dependent regression.

No unequivocal statement is possible because differences
between the dependent and independent R2 values cannot be
attributed wholly to bias caused by overfitting the sample data.
The independent classifier is perhaps "inadequate" because it
trains on only half the land area that the JES sample design
specifies as necessary (within cost constraints) to adequately
handle the variability (in the mix of crops) between sampling
units. The fact that training samples are designed to be outside
the area of the segments classified undoubtedly affects the
correlation levels, but is not unlike actual full scene
classification in which samples used for training may be some
distance from many of the pixels classified.

Table 11--TM-1 dependent-independent R2 coaparisons by sensor
Crop Count Within sensor tvoe

Corn
Soybeans
Other

De- Inde- MSS De- Inde- TM
pen- pen- T- P- pen- pen- T- P-
~ ~ value value

~)~)
value value

(R2) (R2)
60 .488 .140 3.44 .001 .877 .759 3.24 .001
60 .887 .834 2.29 .013 .912 .843 4.36 .001
60 .775 .514 3.35 .001 .926 .876 2.65 .005

Independent
vs

MSS Deoendent
T P-value

listed above.)
3.59 .001

-1.46 .075
2.41 .010

Croo Count

(T-values and
Corn 60
Soybeans 60
Other 60

Between sensor types
TM Dependent TM Independent TM

vs vs
MSS Dependent MSS Independent

T P-value T P-value
P-values are calculated from R2's
8.26 .000 8.03 .000
1.36 .090 0.31 .379
5.31 .001 7.55 .000
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Intuitively, the range between the dependent and independent
R2 values can be thought of as a confidence indicator; the
dependent values represent an upper bound and the independent
values a conservative lower bound. Small ranges reinforce
confidence that the dependent value is a "good" measure of the
population relationship while large ranges tend to weaken that
confidence. For example, the large range for MSS corn suggests
that .488 is overly optimistic and probably more biased than the
MSS soybean value of .887 with its smaller range.

Hypothesis testing in this paper generally examines the null
hypothesis of equality between the sensor types (TM and MSS)
against the alternative of better TM sensor performance. The
probability of a Type 1 Error (falsely rejecting the null
hypothesis) is usually only a function of sample variability. In
this case, however; another element is present: the different
degree to which MSS and TM processing overestimate the respective
population regression relationships. The answer to the concern
raised earlier is that for these data sets, indicated significant
differences for corn and other crops probably are showing true
differences; that is, that the improvement in the precision of
the corn estimate coming from the TM regression is probably a
real improvement.

CROP PRODUCTION POTENTIAL
A previous study examining the usefulness of satellite data

in forcasting crop production [ZQ] found marginal potential with
MSS data. This study is not so detailed nor theoretical as that
and approaches the problem from a different aspect. It explores
the proposition that pixel reflectance provides direct informa-
tion about ground cover yield. Clustering, classification, and
regression analysis together indirectly extract the information
contained in the pattern of pixel reflectance vectors.

For the test, farmer-reported yields by field are regressed
against average field reflectance values; that is, average by
field of reflectance values for all pure field pixels. Table 12
shows the results for both corn and soybeans. The best
correlation for each n-tuple of channel variables is reported.
There are diminishing marginal improvements beyond two channels
and rapid falloff after four. This is not surprising in view of
other research reporting that for TM "••.'four' is the
sign ifi cant dimensi onal ity of the da tan [.2.]. Note tha t the be st
four-channel combination for soybeans (1,3,4,6) is not one of
those used in data reduction design TM-3 for area estimation.

The best four-channel yield correlations of 0.47 for corn
and 0.91 for soybeans are very similar to the respective MSS crop
acreage regression correlations of 0.49 and 0.89 reported in
table 2. This pattern may be just a coincidence of numbers, but
it may indicate that as much yield information is contained in TM
data as there is crop or cover information in the MSS data.
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Table 12--Correlations between reported yield and reflectance
Num ber of
channels
(Independent
variables)

R2

Corn (n=21)
Best

channel
n-tuole

SoYbeans (n= 11)
Best

R2 channel
n-tuole

1
2
3
4
5
6
7

.157

.427

.449

.474

.478

.479

.480

4
4,7
4,6,7

1,4,6,7
1,2,4,6,7

1,2,3,4,6,7
All

.763.825

.903

.911

.922

.924

.925

4
2,4

1,3,4
1,3,4,6
1,3,4,5,6
1,3,4,5,6,7

All

Table 13--0Y yersus TM for field yield prediction
Correlations of farmer-reported yield regressed against:

TM OY indicated field Yield
Best four Seotember November

Crop Samole channels Gross Net Gross Net
Corn
Soybeans

21
1 1

.47

.91
.06
N/C

.06

.22
.21
N/C

.15

.31

N/C = Not computed for soybeans.
The best four-channel reflectance/yield relationships are

compared wi th the operational Objective Yield relationships in
table 13. September/November OY estimated field yield is
regressed against farmer-reported yield as in the reflectance
correlation procedure. Both gross yield and net yield (less
harvesting loss) relationships are shown. The differences
between reflectance and OY correlations are substantial.
However, the subsample is small especially for soybeans.
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CONCLUSIONS
The EROS/NOAA TM data delivery system is not yet fully

operational and cannot supply the volume of scenes necessary for
any sizable operational program.

Conclusions based on a single analysis are by definition
tentative. TM performs better than MSS. In every instance the
TM regression correlation is higher (absolutely) than its MS~
counterpart. The range between the dependent/independent R
values for TM are generally smaller than for MSS. The estimate
of variance for TM crop estimates is probably more robust and
less biased than for MSS. September 3 MSS data are not
especially good for estimating corn acreage but TM data are quite
satisfactory. Early to mid-August satellite acquisitions have
been considered optimal for MSS corn and soybean work [.1]. TM
may extend that optimal acquisition window. If RE is an adequate
measure of the value to SRS of the improved-precision, late-
season, crop-area estimates, then data reduction methods can make
TM processing-costs competitive with MSS costs.

The seeming contradiction between two measures of classifier
quali ty, lower TM classification percents correct and higher TM
R2 values, might be explained by the interaction of pixel size
and field characteristics. Enumerators collecting ground data
measure acres over which the crop is seeded; scanners collecting
satellite data measure energy-reflectance over that same area.
The canopy of the emerged crop is seldom uniform across a field.
Primarily because of its increased-resolution pixel, the TM
scanner "sees" these canopy irregularities (figure 2). The MSS
scanner misses them altogether (figure 1). TM appropriately
classifies the irregularities and the crop differently. The
resolution of the ground data may be inadequate to measure- the
correctness of a TM classification.

Substantially more information about yield in a particular
field is contained in average field reflectance than is provided
by OY methods. TM average field reflectance explains the
variability in reported corn and soybean yield about three times
better than does the OY. The correlation levels are higher for
soybeans than for corn (0.93 vs 0.48) using average reflectance
obtained in September. TM reflectance may be valuable for yield
estimation and/or forcasting. However, to benchmark the reflec-
tance values to a yield level requires access to end-of-season
yields in at least some fields. Therefore, TM midseason yield
forecasts are not possible until other relationships are found
and exploi ted.

The evidence in figure 2 of TM's improved ground feature
visibility suggests that it may have value for area frame
development. Physical features are important for defining
strata, count unit, and sampling unit boundaries.
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RECOMME.DATIO.S
This study shows that processing procedures exist to make TM

cost-competitive with MSS for producing crop-area estimates.
However, additional research is needed to establish the
statistical properties of the regression estimates resulting from
the use of either data type. The statistically significant
differences between the independent and dependent regression
correlations suggest that current procedures underestimate the
variance of the crop estimates produced. Recent studies in other
areas [1Jl,ll] suggest that a bias in the level of the crop
estimates may also exist.

Sampling studies, perhaps as part of the 1985 Classifier
Study [1Jl], are needed to determine the following: How represen-
tative of scene/strata agriculture is the scene/strata JES
sample? How representative of scene/strata reflectance is the
pixel sample defined by the JES segments? If dependent training
and estimation leads to biased results, how can modified jack-
knife procedures be implemented operationally to reduce or
eliminate the bias, to minimize or eliminate the expense of
supplemental ground data collection, and to avoid multiple full-
scene classifications?

Additional research is needed in the area of improving
estimates of crop production using TM data. The potential for
end-of-season yield estimates based on the reflectance/yield
relationship identified here is limited. That relationship is
based on field-specific reflectance. Field boundaries and crop
labels outside the JES sample are unknown in the scene. Thus,
any use of average field reflectance is limited to the JES
sample. If the same high reflectance/yield relationship is found
for other crops and in other scenes obtained for different dates,
it may be possible to estimate State crop yieldS from a direct
expansion of JES reflectance-imputed field yields.

Corn did not do as well as soybeans in yield analysis.
Would a July or August scene have produced better results? How
well would OY or plant process models perform if field
reflectance were used as an input variable? Would resulting
production estimates have sufficient precision to be of any value
to the Crop Reporting Board? Future yield/remote sensing
research should seek answers to questions such as these.
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APPEBDIX I. BEREFIT/COST COMPUTATIORS

Cost comparisons between MSS and TM processing may be an
important consideration when choosing the type of sensor data for
a particular application. SRS has Iittle experience in proces-
sing TM data and little information concerning the associated
costs. Therefore, the cost figures used in the ensuing computa-
tions are estimated, often with insufficient data. The following
is presented to document the procedure used to obtain the
estimates and to explain the method used to compute the ratio
elements. The average costs quoted below are 1983 DCLC MSS costs
averaged to a State figure [22].

Much of the cost to obtain Landsat-based crop area estimates
for a State is not dependent on the Landsat sensor format used.
For example, ground data collection and edi ting costs (averaging
$65,000) and personnel, equipment, and supply costs (averaging
$80,000) are not dependent on the sensor type. The sensor depen-
dent cost elements are Landsat data acquisition and computer
processing costs. These averaged $9,000 and $41,000, respective-
ly, for MSS processing. TM data acquisition costs (under 1984
pricing) would average $38,750 per State. This leaves only TM
computer processing costs to be estimated.

Costs to process a full scene are estimated from sample data
processing costs and then assumed to hold for all scenes that
would be processed in a typical State. Two elements of sample
processing form the basis for costing. The observed sample level
relationship between these two is used later to extrapolate from
State-level MSS to TM costs. The two elements--signaturedevelopment and sample classification--are used because they
represent two fairly intensive computer central processor (CP)
activities. Overall computer costs are more a function of the CP
demands than they are of input/output operations or storage
costs.

Factor Component 1 (FC1) has to do with clustering
(signature development). Clustering costs appear from observing
the empirical data to be a function of the number of covers
clustered, the number of pixels in each cover, the number of
iterations of the algorithm, the number of channels, and the
number of multivariate normal distributions found in the data
set. This last variable is unknown before clustering and is
ignored in the CP usage model formulated. The following ratio
appears to approximate the ratio of CP time for different
variable inputs as observed in sample data processing:

23



FC1 = Ii Ln HPix1i * [HPix1i * (HChan1i)2 * IT1i]
Ij Ln DPix2j * [HPix2j * (HChan2j)2 * IT2j],

Where:
Ln = natural logarithm,
DPix = number of pixels for that data set/cover,
HChan = number of channels,
IT = number of iterations,
i,j = number of covers clustered in data sets 1 and 2,
set subscripts (1,2) = the data sets compared,
I = summation notation.

Factor Component 2 (FC2) is a function of classification;costs are affected by the numoer of pixels classified, the number
of channels in the pixel data, and the number of categories in
the classifier. The following ratio approximates the ratio of CP
times observed in sample processing:

HPix1 * [Ln HCats1 * (HChan1)2]
HPix2 * [Ln HCats2 * (HChan2)2],

Where:
HPix = number of pixels classified,
HCats = number of possible classification categories,
and other items are as previously defined.

Appendix table 1 shows predicted and observed behavior of
the formulas presented. In both cases, the average predicted
factor component is less than the observed. The observed data
were obtained from three different systems. No attempt to esti-
mate program CP overhead differences by system was made. Over-
head can distort the results, especially on small data sets. The
resul ting TM processing estimates are probably conservative but
serve to form some basis for MSS comparisons.

Appendix table l--Factor component formula behavior
Predicted---FC1---0bserved Predicted---FC2---0bserved
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0.70
1. 70
0.06
2.12
0.70

10.60
22.60

2.51
0.09
3.20
4.43 average

1'.00
1.80
0.07
2.25
0.90

13.40
30.29

1.83
0.07
2.40
5.40

1.3 1.6
3.6 6.2
4.0 6.9
2.8 3.9
3.1 4.5
1.1 1.1
2.7 average 4.0



Factor components for the designs discussed in this paper
are presented in Appendix table 2. A simple average of the two
components is used as the estimated factor (EF) by which MSS
processing costs are adjusted to approximate TM processing costs.

Appendix table 3 shows the cost and benefit computations for
MSS and the three TM design winners discussed in the body of this
paper. Benefits are calculated only for corn and soybeans as
these are the only Iowa crops for which crop area regression
estimates are produced.

Appendix table 2--Factor co.putations for design winners

DesiQ:n
MSS
TM-1
TM-2
TM-3

Clustering
(FC1)

1.00
9.00
0.15
0.05

Classification
(FC2)

1.00
15.40
11 .90

3.70

Average
( EF)

1.0
12.2
6.0
1.9

Appendix table 3--Computations used in benefit/cost analysis

Costs:
Desi~n

MSS
TM-1
TM-2TM-3

JES
survey

65
65
6565

-$1,000 units-
Landsat Computer Other Total

~ processing costs costs

9.00 EF * 41 75 190 •a
38.75 EF * 41 75 678.9
~8.75 EF * 41 75 424.88.75 EF * 41 75 256.7

Be·nef'its :
Design

$1,000 units

~ .R£ Benefit

~ L.n 12,.,
SoYbeans ~ ,81.1

~ h19. 'i2.4
Soybeans 10.Q2 70Q.8

~ h19. 'i2.4
Soybeans 12.2Q 7Q8.Q

~ !....1.Q. 266.,
SoYbeans L..5..Q. 4Q1.4
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~~utation Q! ~ ~ ratio ~ ~ follows~

Where:
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.Ili IMPROVING~ ~ STATISTICS·

Martin L. Holko
Richard S. Sigman

u.S. Department of Agriculture
Statistical Reporting Service

Washington, D.C., USA

ABSTRACT

Landsat data are used in two ways to improve U.S. crop
statistics. Landsat color-composite images are used to stratify
areas of land with regard to land use. This stratification is
used as a technique to improve the efficiency of an area
sampling frame. Also, Landsat digital data are classified and
the classified results are used as supplementary information to
an agricultural survey. The combination of Landsat
classification results and survey data improves the precision of
the estimates made.

1.0 Introduction

The Statistical Reporting Service (SRS) is the agency of the U.S.
Department of Agriculture responsible for current statistics
describing domestic crop and livestock production. For the most
part, these statistics are estimates based on sample surveys
conducted by SRS personnel.
A major source of data for SRS is its nationwide June Enumerative
Survey (JES). It is in conjunction with the JES that SRS uses
data from the Landsat satellites. Landsat data are used to
improve the precision of the estimates obtained from the JES in
two different ways. One use of Landsat data is in the
development of an area sampling frame from which the JES sample
is selected. A second use is as current, supplemental
information that, when combined with the data collected during
the JES, increases the precision of calculated area estimates.
·Presented at the Eighteenth International Symposium on Remote
Sensing of Environment, Paris, France, October 1-5, 1984.
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2.0 Use of Landsat Imagery in Area Frame Construction

~ Conceots
In area-frame sampling the sample units are pieces of land called
segments. The boundaries of segments are well-defined, physical
features -- such as roads, footpaths, rivers, and railways --
that can be both delineated on maps and aerial photographs and
also readily identified by data collection personnel in the
field. An area-sampling frame is a complete list (or more
frequently a set of specifications that would generate a complete
list) of segments that cover a geographical area of interest,
such as a state or province. This geographical area of interest
is called a population.
An area sampling frame is a basic tool for collecting
agricultural statistics. It is used in a number of countries to
estimate acreage and yield of agricultural products as well as
farm-economics parameters such as prices and labor for the
current year. Area frame sampling provides accurate information
by taking representative samples from only a small portion of the
total land area. Estimates can be available five to six weeks
after the beginning of data collection.
The construction of an area sampling frame consists of several
steps [Houseman, 1975]. The first step is the delineation on a
base map of stratum blocks. These are large contiguous areas of
homogeneous land use. In addition to the mapping symbols on the
base map, information from satellite imagery, aerial photography,
and other maps are used in this stratification step. All of the
stratum blocks of the same land use constitute a stratum. Like
segment boundaries, the delineated strata boundaries must be
identifiable in the field. The purpose of stratification is to
increase the precision of sample survey estimates.
The next step is to divide the strata blocks into smaller areas
called primary samplin~ units (PSU's). The PSU's vary in size
depending on the stratum but generally contain from 5 to 20
potential segments. Out of each stratum a suitable number of
PSU's will be randomly chosen with probability of selection
proportional to the area of the PSU.
The purpose of the PSU's is to serve as an intermediate delinea-
tion between the large strata blocks and the individual segments.
By delineating PSU's all of the segments in the population need
not be delineated. Instead, only the segments in the randomly
selected PSU's are delineated by subdividing the PSU into the
appropriate number of segments based on the area of the PSU and
the target segment size. In strata that are predominantly culti-
vated land, the target segment size is typically one square mile.
After the selected PSU has been subdivided, one segment is
randomly selected from the PSU for field enumeration.
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Desired data are then collected from the sample segments by
interviewing farmers who operate land inside the segment. Since
the segments within each stratum are statistically representative
of the stratum, the data collected from the segments can be
expanded to the total area of the stratum. The desired estimate
for the entire population is then obtained by summing the results
for each stratum.

~ ~ Experience
SRS has constructed and maintains an area frame for each of the
48 contiguous states. Since the construction of an area frame
for a state is a major effort, SRS is only able to construct
approximately three new area frames per year. Once an area frame
for a state is constructed, it is used annually for anywhere from
10 to 20 years before it is revised or replaced.
The majority of SRS's area frames contain five basic strata:
cultivated land, range and pasture, water, nonagricultural land,
and cities and towns. The cultivated land in most states is
further stratified by separating "intensively" cultivated land
from "extensively" cultivated land. (In Nebraska there are two
intensively-cultivated-Iand strata.) In addition to the five
basic land-use strata, the area frames in California and Texas
each contain one or more "crop specific" strata. The SRS area
frames in Washington, Oregon, and Idaho have strata for dryland
grain. [Geuder, 1984]
The use of Landsat imagery to stratify SRS area sampling frames
was first demonstrated by Hanuschak and Morrisey [1977]. In this
study, county maps at a scale of 1:126,720 were photographically
reduced to a scale of 1:250,000 on mylar and overlaid on
1:250,000-scale, color Landsat imagery produced on paper by the
EROS Data Center. The Landsat image was photo-interpreted to
provide land-use information, whereas the overlaid county map
provided physical features for delineating stratum blocks andPSU's. This procedure was then used by SRS in 1979 to construct
a new area frame for the state of California [Fecso and Johnson,
1981]. Since 1979, SRS has photo-interpreted Landsat images for
constructing new area frames in Arizona, Colorado, Florida,
Idaho, New Mexico, Oregon, Texas, Washington, and Wyoming. The
majority of these new frames have been in the western United
States where much of the cultivated land is irrigated and can
thus be readily identified on Landsat images.
In 1982, SRS updated the Nebraska area frame by restratifying the
urban stratum and areas where rangeland had been converted to
cropland. Used in this restratification effort were plots giving
the location of all pivot irrigation in 58 counties. These plots
were developed by the University of Nebraska from Landsat data,
administrative records for well permits, and field observations
by county agents. [Hale, 1983]
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Burns [1983] has demonstrated the use of digital Landsat data for
updating SRS sampling frames in an area in Louisiana. In this
study, unsupervised clustering of the Landsat data was performed,
and then stratum labels were assigned to the clusters by an
analyst using an interactive image processing system. SRS is
further evaluating this procedure for stratifying area sample
frames in Wyoming and Florida [Geuder, Blackwood, and Radenz;
1983J.

3.0 Landsat Data as Supple.ental Infor.ation

~ Background
SRS conducts the JES annually in late May and early June. The
JES survey procedure requires that information be obtained for
all the land within each of the sampled segments. To insure that
all the land is accounted for, aerial photographs, at a scale of
1:8,000, are used as an enumeration aid. The boundaries for each
segment are drawn on individual non-current photographic prints.
These segment photographs and corresponding questionnaires are
sent to field enumerators for data collection. As part of the
data collection procedure, each enumerator is instructed to draw
the boundaries of all fields, within each segment, on the segment
photograph (a field is defined as a continuous block of land
containing the same crop or land cover). On the corresponding
questionnaire the enumerator records the cover and size of each
field, as well as livestock numbers and other agricultural
information obtained from the operator. The information col-
lected during the JES is aggregated to the segment level and
direct expansion estimates are then calculated to obtain state
level estimates for crop hectares. The formulas for the direct-
expansion estimator and its variance are as follows:

Let !c = the direct expansion estimate for the
hectares of crop c

tc
~ Ns ns

= L- L- yjsc
s=1 ns j=1

where:
yjsc = the hectares reported to crop c,strata s in segment j, for

ns = number of segments sampled in strata s
Ns = the total number of potential segments in stratum s
S = the total number of strata.
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The estimated variance is:

V(!) ~ (Ns-ns) Ns= L-
s=1 ns (ns-1)

where:
.!!..s. Yjsc

Y.sc = L- •j= 1 ns

In 1972 SRS personnel started to investigate the potential of
using digital Landsat data to improve the precision of the esti-
mates obtained from the JES. The procedure developed consists of
the following steps:
- Analysis District Selection: Landsat data are selected and
boundaries of Landsat analysis districts defined.
- Signature Development: Data collected during the JES and cor-
responding Landsat data are used to develop a maximum likeli-
hood classifier for each analysis district.
- Small Scale Processing: The Landsat pixels representing the
area within each segment contained in an analysis district are
classified. A relationship is developed between the number of
pixels classified to a crop and the hectares recorded for that
crop on the JES.
- Full Frame Processing: All of the Landsat pixels within the
analysis district are classified. Estimates are calculated at the
analysis district level by applying each crop regression
relationship to the all-pixel classification results.
- State Level Accumulation: The estimates for all analysis dis-tricts are combined to create a state level estimate for each
crop of interest.

~ Analvsis District Selection
An analysis district is an area of land covered by Landsat
imagery of the same overpass date. A separate Landsat analysis is
done for each analysis district. Depending on the location and
availability of Landsat data, each state is divided into a number
of analysis districts. The Landsat analysis district location is
treated as a geographical post-stratification imposed on the
original area frame. As a result of this post-stratification,
SRS personnel must determine the number of frame units and the
sampled segments which fall into each post-stratum. This
results in two types of strata categories:
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1) The first stratum category corresponds to the area of the
state for which there is no Landsat coverage. This area may be
non-contiguous. The portion of each land-use stratum within these
geographical areas makes up the post-strata. We let

Ms = the total number of segments in the non-Landsat area
in land use strata s, and

= the number of sampled segments in the non-Landsat area
in land use strata s.

2) The second stratum category corresponds to the areas of
the state where the land-use strata and the analysis districts
are·defined. In these areas each stratum consists of the area of
intersection between the land use strata and a Landsat analysis
district. Here, we let

the number of frame units in analysis district a, landuse strata s, and
= the number of sampled segments in analysis district a,land use strata s.

~ Signature Develooment
Signature development is done independently for each analysis
district and consists of four phases. The first phase is segment
calibration and digitization. Segment calibration is a first-
order linear transformation which maps points on .the segment
photograph to a map base (in our application this map base is the
U.S. Geological Surveys quadrangle map series, which uses the
latitude/longitude coordinate system of reference). Segment digi-
tization is the process by which field boundaries drawn on the
segment photograph are recorded in computer-compatible form. The
combined process of calibration and digitization gives us the
capability of digitally locating every JES field relative to a
map base.
The next phase in signature development is the registration of
each Landsat scene. SRS's Landsat registration process is a
third-order linear transformation that maps each Landsat pixel
within a scene to a map base [Cook, 1982]. Corresponding points
selected on a two-degree map and a 1:250,000 Landsat image are
used to generate this mathematical transformation. The combina-
tion of segment calibration, digitization and Landsat
registration provides the capability to locate each JES segment
in its corresponding Landsat scene (to within about 5 pixels of
the correct location). Since this registration is not accurate
enough for selecting training data, line plots of segment field
boundaries and corresponding greyscale prints are overlaid and
each segment is manually located to within 1/2 pixel of the
correct location. With this process we are able to accurately
identify all of the pixels associated with any JES field. The
result of this is a set of pixels labeled by JES cover.
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The third phase of signature development is supervised
clustering. In supervised clustering all of the pixels for each
cover are processed through one of two available clustering
algorithms: Classy or Ordinary Clustering. Classy is a maximum
likelihood clustering algorithm developed at Johnson Space Center
in Houston, Texas [Lennington and Rassback, 1972]. Ordinary
Clustering is an algorithm derived from the ISODATA algorithm of
Ball and Hall [1967]. Each clustering algorithm generates several
spectral signatures (categories) for each cover. Each spectral
signature consists of a mean vector and the covariance matrix for
the reflectance values for that category.
In the fourth phase, the statistics for all categories from all
covers are reviewed and combined to form the discriminant
functions of the maximum likelihood classifier. The formulas for
the discriminant functions are as follows:

The maximum likelihood classifier with equal priors:
Classify pixel k to category c if DCk L Dik for all iic

The maximum likelihood classifier with priors:
Classify pixel k to category c if D8k L D~k for all iic
where:

Dik = - loge(IZil) - (Xk-Ui)' zy1 (Xk-Ui)
D£k = Dik + log(Pi)
U· = the mean vector for category i1

Zi = the covariance matrix for category i

Pi = the prior probability for category i

Xk = the reflectance value for pixel k

~ Small Scale Processing
In small-scale processing each pixel associated with a JES seg-
ment is classified to a category. This classification is usually
done using both the classifier with priors and the equal priors
classifier. For each classifier, pixels classified to each cate-
gory are summed to segment totals. The category totals
corresponding to crops of interest are summed to segment crop
totals. These crop totals are used as the independent variable in
a regression estimator. Correspondingly, the hectares reported on
the JES for each crop are summed to segment totals and used as
the dependent variable. The segment totals are used to calculate
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least-squares estimates for the parameters of a linear regres-
sion. Two sets of regression equations are developed for each
crop within each stratum (one for the classification with priors,
one for the classification with equal priors).
The linear regression equations for analysis district a, strata
s, and crop c are of the form:

Yjasc = bOasc + b1asc Xjasc

where:

the crop total classification for segmentanalysis district a, land use strata s
bOase, b1asc = least squared estimates of the regressionparameters for crop c, analysis district a, land use

strata s

Yjasc =
Xjasc =

the reported hectares of crop cl from segmentanalysls district a, land use s~ratum s j,

j,

~ EYll Frame Processin~
The regression equations developed in small-scale processing are
evaluated and the classifier giving the best overall regression
relationship is selected. This classifier is used to classify
every pixel in the analysis district. The classified results are
tabulated by category and land-use stratum. For each crop of
interest the category totals are summed to stratum crop totals.
From these totals the population averages per segment are calcu-
lated. Using the population average, a stratum-level regression
estimate is made for that analysis district for each crop.

Let ?~sc be the analysis district level regression estimatorfor crop c and stratum s.
Then:
?~sc =
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.. mas!!!.asYjasc Xjasc

Y.asc = L and x.asc = :Lj=1 ..mas j=1 ..mas
Mas = previously defined (3.2)

.. previously defined (3.2)mas =



Xjasc = previously defined (3.4)

Yjasc = previously defined (3.4)
X .asc = the population average for crop c in analysisdistrict a land use stratum s

The estimated variance is:

(m~s-1)
.• (1-rasc2)(mas-2)

where:

r~sc = the sample correlation between Yjasc and Xjasc

~ State Level Accumulation
The final step of our Landsat analysis is the combining of all of
the estimates (one for each post strata) into a state-level
estimate of the area of the desired crop.

Let 10 be the final state level estimate for the hectares of
crop c.

Then:

=

where:

J..§.a
L .L tasca= 1 s= 1 + MI Y.lc

Y.lc = ~
j=1

MI, ml
?~sc is

Yjlc =

Sa =
A =
L =

previously defined (3.2)

as defined earlier (3.5)
the hectares reported to crop c for segment j in the
non-Landsat post strata 1

The number of land use strata in analysis district a
The number of analysis districts
The number of land use strata that exist in the area
where we do not have Landsat coverage
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The estimated variance is:
--A --S'
LL
a= 1 s= 1

-1
>
1=1

(Ml-ml)Ml
ml(ml-1 )

ml 2
> (Yjlc-Y.lc)
j=l

~ Evaluation Q! ~ Landsat Estimate
Landsat data are used as supplemental information to improve the
precision of the area estimates obtained from the JES. Unlikearea frame construction, the effectiveness of this use of Landsat
data can be measured. The measure used is the efficiency of the
Landsat estimator relative to the JES direct expansion estimator.
This relative efficiency (RE) is defined as the ratio of the
variance of the direct expansion to the variance of the Landsat
estimate. Equivalently, this is the factor by which the sample
size would have to be increased to produce a direct expansion
estimate with the same precision as the Landsat estimate~

RE =

~ Implementation
The basic concepts of SRS's Landsat analysis were developed
during the 1972-1979 time period. In 1980 as part of the
AgRISTARS Domestic Crop and Land Cover Project, SRSts Remote
Sensing Branch began making current-year, state-level area esti-
mates for winter wheat, corn and soybeans in selected states.
This move to a pseudo-operational mode meant that current year
Landsat data (May for winter wheat, August for corn and soybeans)
had to be processed to produce estimates by late-November and
late-December for winter wheat and corn/soybeans respectively.
The original implementation plan called for including two states
in 1980 and adding two more states each year to a total of 10states by 1984. In 1980 winter wheat estimates were produced for
Kansas, corn and soybean estimates for Iowa. Table 1 shows the
states included in the project, the crops for which estimates
were made, and the number of Landsat scenes needed to cover each
state. In 1983, SRS deviated from the original plan by adding
only one state to the project. No new states were added in 1984.
These modifications were necessary due to personnel ceilings and
limitations of current processing capabilities. In 1984, under
the modified plan, SRS expects to process about 2,000 JES
segments contained in 66 Landsat scenes covering most of seven
states (Table I).
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~ Results
The JES direct expansion and Landsat estimates are two of many
indications used to determine the official USDA area estimates.
For most major crops the JES direct expansion is the key indica-
tion used for setting the preliminary area estimates in July.
The Landsat estimates for the states in the project (available at
the end of the crop year) are reviewed when the final end-of-
season estimates are made.
Tables II through VI show the JES direct expansion, the Landsat
estimates and the final USDA estimates. The relative efficiencies
of the Landsat estimates are mostly in the range from 1.2 to 2.0
for the major crops of winter wheat, corn and soybeans. The
relative efficiencies for crops with fewer hectares such as
cotton and rice are considerably better. The level of some of the
estimates for cotton and rice, however, differ considerably from
other data sources used to make the official estimate. Part of
the variability in the relative efficiencies for the major crops
can be explained by the amount of Landsat coverage available to
do each estimate. Figure 1 shows three graphs comparing the
percent of each crop covered by Landsat data with the relative
efficiency obtained. If the trend apparent in these graphs can be
extended, one would expect that the best we could do is relative
efficiencies of about 2.5. These results, although promising,
are not as good as originally expected. However the continued
personnel limitation and the increasing respondent burden being
placed on our farm sector may make our Landsat estimator one of
few techniques feasible for improving crop statistics in the U.S.
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Table I: States and Crops tor Which Landsat Area Estiaates Baye Been Made
I •• ber ot

Landsat Scenes
.eeded:State Yeara 10 Project

Kansas 1980, t 81 , '82, '83, '84Iowa 1980, '81 , '82, '83, '84Oklahoma· 1981 , ,82, '83, '84M1ssour1· 1981 , V, '83, '84

Colorado· 1982, '83, '84Il11n01s 1982, '83, '84Arkansas· 1983, '84

TOTAL
• major produc1ng areas

Area Esti •• tes
Produced for:
w1nter wheat
corn, soybeans
w1nter wheat
w1nter wheat,
corn, soybeans,
cotton, r1ce
w1nter wheat
corn, soybeans
soybeans, rice,
cotton

16
12

7
12

14
10

5

66

Table II: Area Estiaatea tor Winter Vbeat Baryested by State and Year
JES Direct Expansion Landsat .egression

Standard Standard Relative USDAState/Year Estiaate Error Estiaate Error Etticiency Estimate

(1,000 hectares) (1,000 hectares) (1,000 hectares)
Iansas

1980 5,214 162 5,051 136 1.3 4,8561981 5,452 158 5,298 104 2.3 4,8971982 5,677 167 5,611 120 1.9 5,3011983 4,652 153 4,477 124 1.5 4,371
Oklaho.a

1981 2,612 117 2,483 101 1._ 2,5901982 2,914 119 2,660 90 1.8 2,7921983 1,725 85 1,688 74 1.3 1,740
Colorado

1982 1,276 91 1 ,132 49 3.- 1 ,1781983 1 ,193 115 1,110 81 2.0 1 ,214
Misaouri

1983 830 66 866 49 1.9 749
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Table III: Area Estiaates for Corn by State and Year
JES Direct Expansion Landsat Regression

Standard Standard Relatiye USDA
State/Year Estaate Error Estillate Error Ef't1chncy Estillate

(1,000 hectares) (1,000 hectares) (1,000 hectares)

Iowa
1980 5,735 115 5,801 93 1.9 5,666
1981 5,828 128 5,820 103 1.6 5,828
1982 5,601 118 5,568 113 1.1 5,565
1983 3,708 111 3,666 81 1.8 3,683

Missouri
1981 870 75 775 51 2.2 850
1982JJ
1983 758 60 629 45 1.8 688

Il11nol8
1982 11,809 115 ¢,677 106 1.2 II ,735
1983 3,1182 113 3,380 102 .1.2 3,318

Table IY: Area Esti.ates tor Soybeans by State and Year
JES Direct Expansion Landsat legression

Standard Standard Relative USDA
State/Year Estiaate Error Esti.at. Error Ef't1ciency Et'timate

(1,000 hectares) (1,000 hectares) (1,000 hectares)
Iowa

1980 3,395 112 3,290 96 1.5 3,359
1981 3,260 1011 3,275 82 1.6 3 ,27 8
1982 3,539 106 3,1133 99 1.2 3,1128
1983 3 ,155 98 3,200 88 1.3 3,238

Missouri
1981 2,306 115 1 ,9611 86 2.1 2,072
1982JJ
1983 2,275 1211 2,008 97 1.6 2,1011

Il11nois
1982 3,866 120 3,767 109 1.2 3,7113
1983 3,696 107 3,669 99 1.2 3,602

Arkansas
1983 1 ,661 78 1,565 70 1.3 1,578
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Table Y: Irea Eatt.ates tor lice bl'State and Year
JES Direct Expansion Landaat legreasion

Standard Standard lelat1ve USDA
State/Year Eat1aate Error Est1aate Error Et'f1c1enc7 ElSt1aate

(1,000 hectares) (1,000 hectares) (1,000 hectares)
MilSsouri

1981 47 20 31 10 6.8 31
19821/
1983 51 21 46 10 3.9 25

Irk.naas
1983 419 48 376 32 2.2 374

Table VI: Area Eatiaatea for Cotton by State and Year
JES Direct ExpanlS10n Landsat Regress10n

Standard Standard lelat1 .•e USDA
State/Year Estaate Error Estiaate Error Et'f1c1ency ElStimate

(1,000 hectares) (1,000 hectares) (1,000 hectares)
M1ssouri

1983 26 15 30 4 11.1 44
Irkansas

1983 144 33 103Z1 19 2.9 138

llNo Landsat est1mates were made for Missouri during 1982 due to
insufficient Landsat coverage.
Z1ArkansalS had a lot of cotton that was planted and abandoned prior to the
satelli te overpass. This area was not included in the Landsat regression
estimate.



Figure 1: Plot of Peroent of Eaoh Crop Covered by Landsat Data Versus the
Relative Efficienoy of the Landsat Estimate.
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